SUMMARY REPORT 43 WEST CARDINAL LANE (FORMERLY 1202 WEST CARDINAL LANE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 43 WEST CARDINAL LANE (FORMERLY 1202 WEST CARDINAL LANE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1	UST REMOVAL AND SOIL SAMPLING	-
2.2 2.3	SOIL ANALYTICAL RESULTS	
2.4	GROUNDWATER ANALYTICAL RESULTS	.5
3.0	PROPERTY STATUS	. 5
4.0	REFERENCES	. 5

Tables

Table 1	Laboratory Analytical Results - Soil
Table 2	Laboratory Analytical Results - Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	
001	underground storage tank
VISL	underground storage tank vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 1202 West Cardinal Lane* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

On May 15, 2012, a single 280 gallon heating oil UST was removed from the rear patio area at 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e.,

staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 4'4" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated August 24, 2016, SCDHEC requested an IGWA for 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane (Formerly 1202 West Cardinal Lane) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On March 8, 2017, a temporary monitoring well was installed at 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 **PROPERTY STATUS**

Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 43 West Cardinal Lane (Formerly 1202 West Cardinal Lane). This NFA determination was obtained in a letter dated July 27, 2017. SCDHEC's NFA letter is provided in Appendix D.

4.0 **REFERENCES**

- Marine Corps Air Station Beaufort, 2012. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 1202 West Cardinal Lane, Laurel Bay Military Housing Area*, August 2012.
- Resolution Consultants, 2017. Initial Groundwater Investigation Report February and March 2017 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, June 2017.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1Laboratory Analytical Results - Soil43 West Cardinal Lane (Formerly 1202 West Cardinal Lane)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 05/15/12					
/olatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)							
Benzene	0.003	ND					
Ethylbenzene	1.15	ND					
Naphthalene	0.036	ND					
Toluene	0.627	ND					
Xylenes, Total	13.01	ND					
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270D (mg/kg)						
Benzo(a)anthracene	0.66	ND					
Benzo(b)fluoranthene	0.66	ND					
Benzo(k)fluoranthene	0.66	ND					
Chrysene	0.66	ND					
Dibenz(a,h)anthracene	0.66	ND					

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2Laboratory Analytical Results - Groundwater43 West Cardinal Lane (Formerly 1202 West Cardinal Lane)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 03/08/17
Volatile Organic Compounds Analyzed	d by EPA Method 8260B	(μg/L)	
Benzene	5	16.24	ND
Ethylbenzene	700	45.95	ND
Naphthalene	25	29.33	ND
Toluene	1000	105,445	ND
Xylenes, Total	10,000	2,133	ND
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8	270D (µg/L)	
Benzo(a)anthracene	10	NA	ND
Benzo(b)fluoranthene	10	NA	ND
Benzo(k)fluoranthene	10	NA	ND
Chrysene	10	NA	ND
Dibenz(a,h)anthracene	10	NA	ND

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

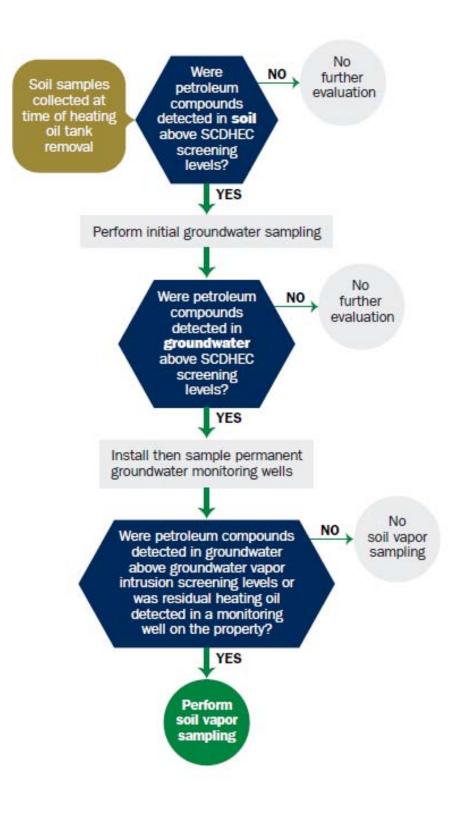
EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level


SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received

Ī

State Use Only

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	ommanding Officer Attn: NRE	AO (Craig Ehde)					
Owner Name (Corporation	Owner Name (Corporation, Individual, Public Agency, Other)						
P.O. Box 55001 Mailing Address							
Beaufort,	South Carolina	29904-5001					
City	State	Zip Code					
843	228-7317	Craig Ehde					
Area Code	Telephone Number	Contact Person					

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #	~
Laurel Bay Military Housing Area, Marine Corps Air Station, Beaufort, S	<u> </u>
Facility Name or Company Site Identifier	
1202 Cardinal Lane, Laurel Bay Military Housing Area	
Street Address or State Road (as applicable)	
Beaufort, Beaufort	
City County	
· · ·	

Attachment 2

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. **This section must be completed.**

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? **YES NO** (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I **DO** / DO **NOT** wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this ______ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Cardinal
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E·	Month/Year of Last Use	Mid 80s
F.	Depth (ft.) To Base of Tank	4 ' 4 "
G.	Spill Prevention Equipment Y/N	No
H·	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J.	Date Tanks Removed/Filled	5/15/2012
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

1202

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 1202Cardinal was removed from the ground and disposed

at a Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)
 UST 1202Cardinal was previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		1202 Cardinal			
		Steel			
A.	Construction Material(ex. Steel, FRP)	& Copper			
B.	Distance from UST to Dispenser	N/A			
C.	Number of Dispensers	N/A			
D.	Type of System Pressure or Suction	Suction			
E.	Was Piping Removed from the Ground? Y/N	No			
F.	Visible Corrosion or Pitting Y/N	Yes			
G.	Visible Holes Y/N	No			
H.	Age	Late 1950s			
I.	If any corrosion, pitting, or holes were observed, des	scribe the location and extent for each piping run.			
	Corrosion and pitting were found on the surface of the steel vent				
	pipe. Copper supply and return lir	nes were sound.			

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?If yes, indicate depth and location on the site map.		Х	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? 		x	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		х	
If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

Β.

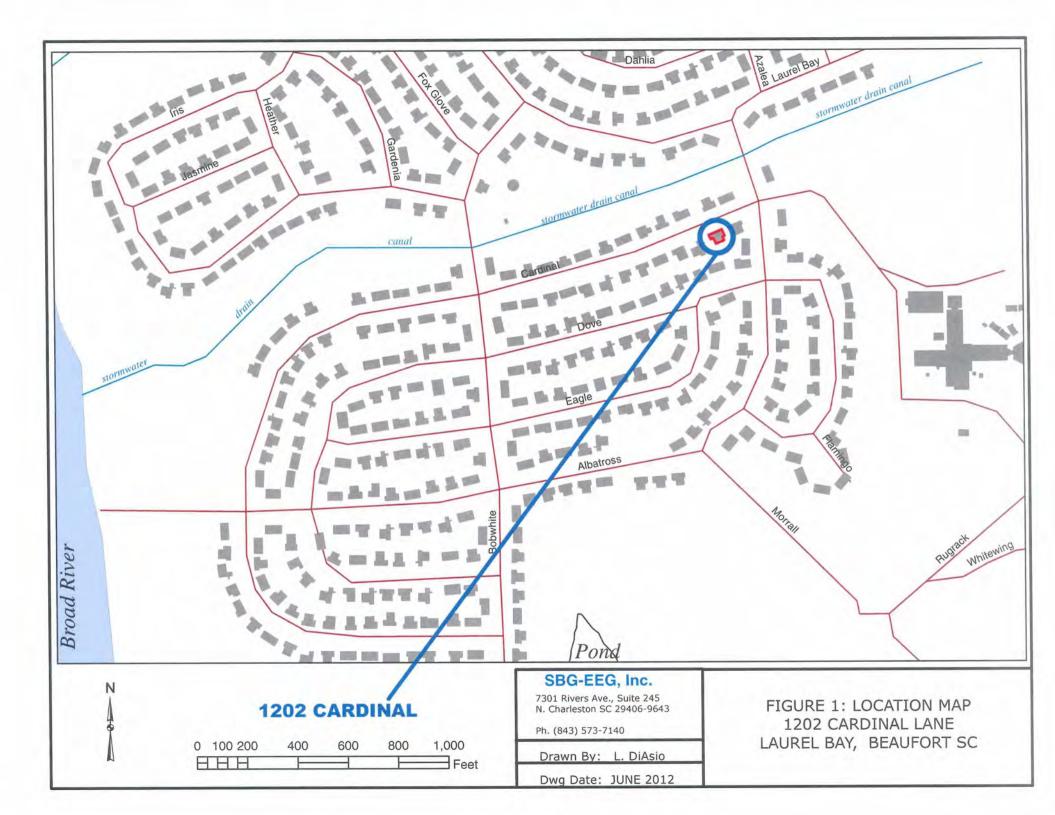
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1202 Cardinal	Excav at fill end	Soil	Sandy	4 ' 4 "	5/15/12 1415 hrs	P. Shaw	
caramar			1				
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

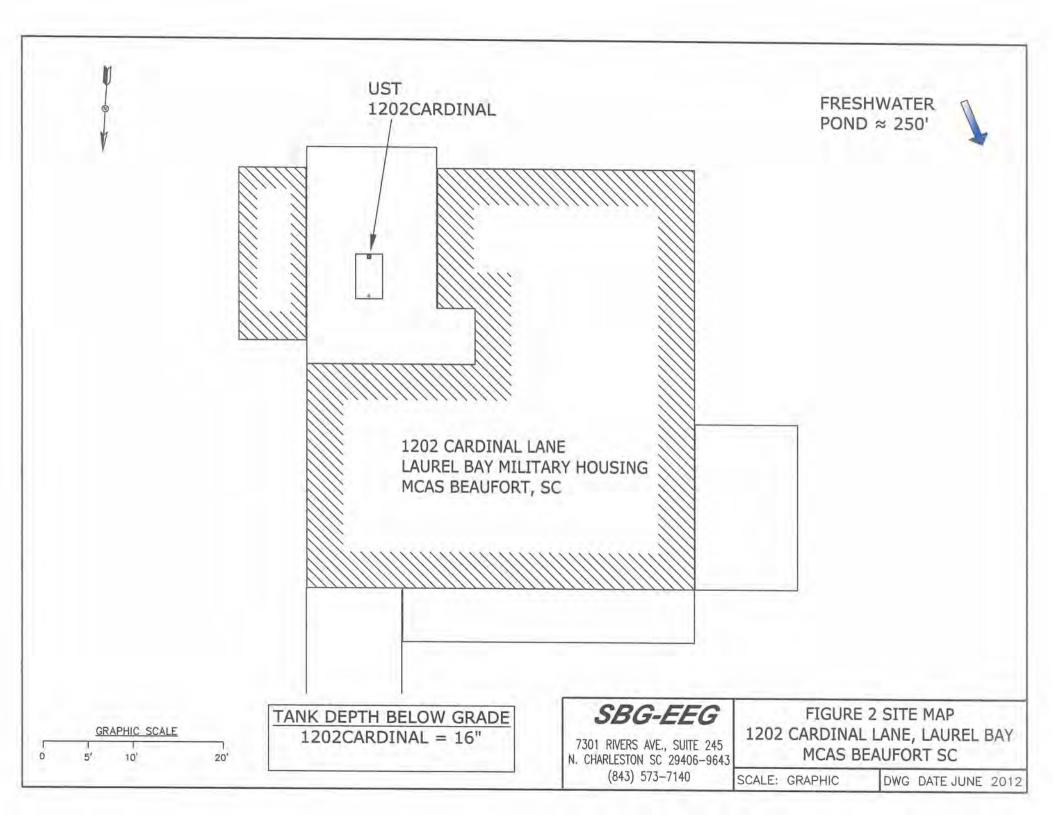
* = Depth Below the Surrounding Land Surface

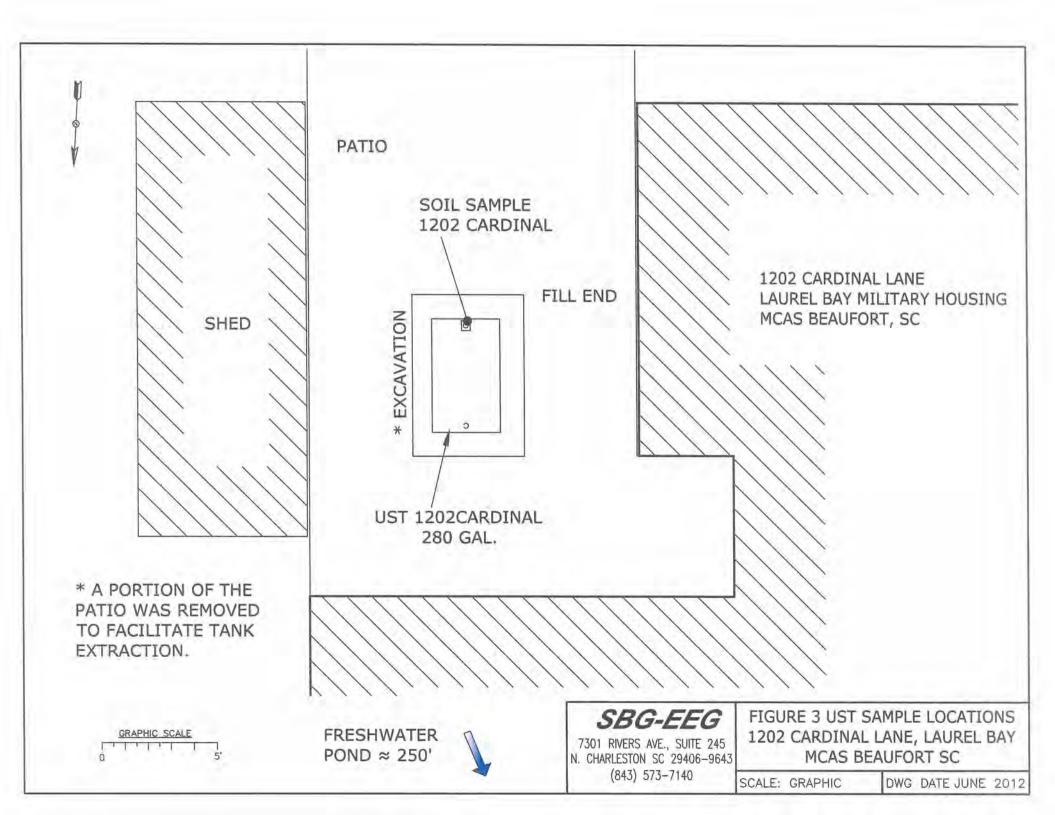
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within	*X	
	1000 feet of the UST system? *stormwater drainage	canal	
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, elec	trici	ty
	cable & fiber optic If yes, indicate the type of utility, distance, and direction on the site map.		-
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 1202Cardinal.

Picture 2: UST 1202Cardinal excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	1202Cardinal			
Benzene	ND			
Toluene	ND			
Ethylbenzene	ND			
Xylenes	ND			
Naphthalene	0.0398 mg/kg			
Benzo (a) anthracene	ND			
Benzo (b) fluoranthene	ND			
Benzo (k) fluoranthene	ND			
Chrysene	ND			
Dibenz (a, h) anthracene	ND			
TPH (EPA 3550)		 		

CoC				
Benzene				
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene			 	
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)				

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700	Contraction Contraction			
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWE2371

Client Project/Site: [none] Client Project Description: Laurel Bay Housing Project

For:

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Roxanne L. Connor

Authorized for release by: 5/31/2012 5:26:03 PM Roxanne Connor Program Manager - Conventional Accounts roxanne.connor@testamericainc.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

he

Expert

Ken A. Hayes Senior Project Manager ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	10
QC Association	19
Chronicle	22
Method Summary	24
Certification Summary	25
Chain of Custody	26

Sample Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NWE2371-01	1479 Cardinal	Soil	05/14/12 13:45	05/19/12 08:20
NWE2371-02	1202 Cardinal	Soil	05/15/12 14:15	05/19/12 08:20
NWE2371-03	396 Acorn-2	Soil	05/17/12 12:15	05/19/12 08:20
NWE2371-04	396 Acorn-1	Soil	05/17/12 09:45	05/19/12 08:20

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.
RL1	Reporting limit raised due to sample matrix effects.
CF7	Result may be elevated due to carry over from previously analyzed sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an appro

GCMS Semivolatiles

Qualifier	Qualifier Description
A-01	No spike added to sample. Data accepted on LCS results.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
-	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
POL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 1479 Cardinal

Date Collected: 05/14/12 13:45

Date Received: 05/19/12 08:20

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Wethod: 50040 02000 - Vola	anie organic comp	ounus by	EFA Methou 02	000					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0141		0.00206	0.00114	mg/kg dry	ė	05/14/12 13:45	05/24/12 16:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	136	ZX	70 - 130				05/14/12 13:45	05/24/12 16:00	1.00
Dibromofluoromethane	136	ZX	70 - 130				05/14/12 13:45	05/24/12 16:00	1.00
Toluene-d8	157	ZX	70 - 130				05/14/12 13:45	05/24/12 16:00	1.00
4-Bromofluorobenzene	326	ZX	70 - 130				05/14/12 13:45	05/24/12 16:00	1.00
Method: SW846 8260B - Vola	atile Organic Comp	ounds by	EPA Method 82	60B - RE	1				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.198		0.131	0.0720	mg/kg dry	1	05/14/12 13:45	05/28/12 21:39	50.0
Naphthalene	21,2	E	0.327	0.164	mg/kg dry	8	05/14/12 13:45	05/28/12 21:39	50,0
Toluene	ND	RL1	0.131	0.0720	mg/kg dry	Q.	05/14/12 13:45	05/28/12 21:39	50.0
Xylenes, total	9.68		0.327	0.164	mg/kg dry	- 0	05/14/12 13:45	05/28/12 21:39	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	107		70 - 130				05/14/12 13:45	05/28/12 21:39	50.0
Dibromofluoromethane	98		70 - 130				05/14/12 13:45	05/28/12 21:39	50.0
Toluene-d8	113		70 - 130				05/14/12 13:45	05/28/12 21:39	50.0
4-Bromofluorobenzene	103		70 - 130				05/14/12 13:45	05/28/12 21:39	50.0
Method: SW846 8270D - Poly	aromatic Hydroca	bons by E	PA 8270D - RE						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.75		0.880	0.447	mg/kg dry	- 0	05/23/12 14:00	05/25/12 14:05	10.0
Acenaphthylene	0.639	J	0.880	0.447	mg/kg dry	¢.	05/23/12 14:00	05/25/12 14:05	10.0
Anthracene	0.477	1	0.880	0.447	mg/kg dry	Q.	05/23/12 14:00	05/25/12 14:05	10.0
Benzo (a) anthracene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Benzo (a) pyrene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Benzo (b) fluoranthene	ND		0.880	0.447	mg/kg dry	¢	05/23/12 14:00	05/25/12 14:05	10.0
Benzo (g,h,i) perylene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Benzo (k) fluoranthene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Chrysene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Dibenz (a,h) anthracene	ND		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Fluoranthene	ND		0.880	0.447	mg/kg dry	p	05/23/12 14:00	05/25/12 14:05	10.0
Fluorene	3.06		0.880	0.447	mg/kg dry	0	05/23/12 14:00	05/25/12 14:05	10.0
Indeno (1,2,3-cd) pyrene	ND		0.880	0.447	mg/kg dry	12-	05/23/12 14:00	05/25/12 14:05	10.0
Naphthalene	9.01		0.880	0.447	mg/kg dry	μ.,	05/23/12 14:00	05/25/12 14:05	10.0
Phenanthrene	4.56		0.880		mg/kg dry	a.	05/23/12 14:00	05/25/12 14:05	10.0
Pyrene	0.582	i	0.880		mg/kg dry	.0.	05/23/12 14:00	05/25/12 14:05	10.0
1-Methylnaphthalene	17.7	2	0.880	0.447	mg/kg dry	-0.	05/23/12 14:00	05/25/12 14:05	10.0
2-Methylnaphthalene	31.9		0.880		mg/kg dry	\$	05/23/12 14:00	05/25/12 14:05	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
							05/23/12 14:00	05/25/12 14:05	10.0
Terphenyl-d14	121	ZX	18 - 120				00/20/12 1100	00/20/12 11:00	
Terphenyl-d14 2-Fluorobiphenyl	121 102	2X	14 - 120				05/23/12 14:00	05/25/12 14:05	10.0

Method: SW-846 - General Che	mistry Parameters							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	75.8	0.500	0.500	%		05/21/12 09:53	05/22/12 09:05	1.00

TestAmerica Job ID: NWE2371

Client Sample ID: 1202 Cardinal Date Collected: 05/15/12 14:15

Date Received: 05/19/12 08:20

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: NWE2371-02 Matrix: Soil

Percent Solids: 88.3

Method: SW846 8260B - Vola	atile Organic Comp	bounds by I	EPA Method 82	260B					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0398	CF7	0.00635	0.00317	mg/kg dry	\$	05/15/12 14:15	05/24/12 16:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	91		70 - 130				05/15/12 14:15	05/24/12 16:30	1.00
Dibromofluoromethane	89		70 - 130				05/15/12 14:15	05/24/12 16:30	1.00
Toluene-d8	122		70 - 130				05/15/12 14:15	05/24/12 16:30	1.00
4-Bromofluorobenzene	128		70 - 130				05/15/12 14:15	05/24/12 16:30	1.00
Method: SW846 8260B - Vola									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00237	0.00131	mg/kg dry	0	05/15/12 14:15	05/25/12 12:50	1.00
Ethylbenzene	ND		0.00237	0.00131		Ş	05/15/12 14:15	05/25/12 12:50	1.00
Toluene	ND		0.00237	0.00131	mg/kg dry	\$	05/15/12 14:15	05/25/12 12:50	1.00
Xylenes, total	ND		0.00593	0.00297	mg/kg dry	\$	05/15/12 14:15	05/25/12 12:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	102		70 - 130				05/15/12 14:15	05/25/12 12:50	1.00
Dibromofluoromethane	104		70 - 130				05/15/12 14:15	05/25/12 12:50	1.00
Toluene-d8	114		70 - 130				05/15/12 14:15	05/25/12 12:50	1.00
4-Bromofluorobenzene	141	ZX	70 - 130				05/15/12 14:15	05/25/12 12:50	1.00
Method: SW846 8270D - Poly	a second s								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0754	0.0383	mg/kg dry	\$	05/23/12 14:00	05/24/12 19:37	1.00
Acenaphthylene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Anthracene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Benzo (a) anthracene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Benzo (a) pyrène	0.274		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Benzo (b) fluoranthene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Benzo (g,h,i) perylene	0.105		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Benzo (k) fluoranthene	ND		0.0754	0.0383	mg/kg dry	~	05/23/12 14:00	05/24/12 19:37	1.00
Chrysene	ND		0.0754	0.0383	mg/kg dry	\$	05/23/12 14:00	05/24/12 19:37	1.00
Dibenz (a,h) anthracene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
Fluoranthene	ND		0.0754	0.0383	mg/kg dry	s)	05/23/12 14:00	05/24/12 19:37	1.00
Fluorene	ND		0.0754	0.0383	mg/kg dry	6,8	05/23/12 14:00	05/24/12 19:37	1.00
Indeno (1,2,3-cd) pyrene	0.0840		0.0754	0.0383	mg/kg dry	12	05/23/12 14:00	05/24/12 19:37	1.00
Naphthalene	ND		0,0754	0.0383	mg/kg dry	10	05/23/12 14:00	05/24/12 19:37	1.00
Phenanthrene	ND		0.0754	0.0383	mg/kg dry	9	05/23/12 14:00	05/24/12 19:37	1.00
Pyrene	ND		0.0754	0.0383	mg/kg dry	\$	05/23/12 14:00	05/24/12 19:37	1.00
1-Methylnaphthalene	ND		0.0754	0.0383	mg/kg dry	0	05/23/12 14:00	05/24/12 19:37	1.00
2-Methylnaphthalene	ND		0.0754	0.0383	mg/kg dry	9	05/23/12 14:00	05/24/12 19:37	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	56		18 - 120				05/23/12 14:00	05/24/12 19:37	1.00
2-Fluorobiphenyl	47		14 - 120				05/23/12 14:00	05/24/12 19:37	1.00
Nitrobenzene-d5	41		17 - 120				05/23/12 14:00	05/24/12 19:37	1.00
Method: SW-846 - General Ch	emistry Parameter	s							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	88.3		0.500	0.500	%		05/21/12 09:53	05/22/12 09:05	1.00
% Dry Solids	88.3		0.500	0.500	%		05/21/12 09:53	05/22/12 09:05	1.00

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Client Sample ID: 396 Acorn-2

Date Collected: 05/17/12 12:15 Date Received: 05/19/12 08:20

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00398		0.00242	0.00133	mg/kg dry	12	05/17/12 12:15	05/24/12 17:01	1.00
Toluene	ND		0.00242	0.00133	mg/kg dry	67	05/17/12 12:15	05/24/12 17:01	1.00
Xylenes, total	0.0126		0.00604	0.00302	mg/kg dry	ų.	05/17/12 12:15	05/24/12 17:01	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4	91		70 - 130				05/17/12 12:15	05/24/12 17:01	1.00
Dibromofluoromethane	94		70 - 130				05/17/12 12:15	05/24/12 17:01	1.00
Toluene-d8	168	ZX	70 - 130				05/17/12 12:15	05/24/12 17:01	1.00
4-Bromofluorobenzene	112		70 - 130				05/17/12 12:15	05/24/12 17:01	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.599		0.114	0.0629	mg/kg dry	0	05/17/12 12:15	05/28/12 22:10	50.0
Naphthalene	4.91		0.286	0.143	mg/kg dry	4,8	05/17/12 12:15	05/28/12 22:10	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	94		70 - 130				05/17/12 12:15	05/28/12 22:10	50.0
Dibromofluoromethane	90		70 - 130				05/17/12 12:15	05/28/12 22:10	50.0
Toluene-d8	113		70 - 130				05/17/12 12:15	05/28/12 22:10	50.0
4-Bromofluorobenzene	108		70 - 130				05/17/12 12:15	05/28/12 22:10	50.0

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.526		0.0843	0.0428	mg/kg dry	0	05/23/12 14:00	05/24/12 20:00	1.00
Acenaphthylene	ND		0.0843	0.0428	mg/kg dry	1	05/23/12 14:00	05/24/12 20:00	1.00
Anthracene	0.154		0.0843	0.0428	mg/kg dry	\$ 1 -	05/23/12 14:00	05/24/12 20:00	1.00
Benzo (a) anthracene	ND		0.0843	0.0428	mg/kg dry	0	05/23/12 14:00	05/24/12 20:00	1.00
Benzo (a) pyrene	ND		0.0843	0.0428	mg/kg dry	-12	05/23/12 14:00	05/24/12 20:00	1.00
Benzo (b) fluoranthene	ND		0.0843	0.0428	mg/kg dry	α	05/23/12 14:00	05/24/12 20:00	1.00
Benzo (g.h.i) perylene	ND		0.0843	0.0428	mg/kg dry	÷0.	05/23/12 14:00	05/24/12 20:00	1.00
Benzo (k) fluoranthene	ND		0.0843	0.0428	mg/kg dry	ġ.	05/23/12 14:00	05/24/12 20:00	1.00
Chrysene	ND		0.0843	0.0428	mg/kg dry	-	05/23/12 14:00	05/24/12 20:00	1.00
Dibenz (a,h) anthracene	ND		0.0843	0.0428	mg/kg dry	9	05/23/12 14:00	05/24/12 20:00	1.00
Fluoranthene	0.0465	J	0.0843	0.0428	mg/kg dry	\sim	05/23/12 14:00	05/24/12 20:00	1.00
Fluorene	1.21		0.0843	0.0428	mg/kg dry	\$	05/23/12 14:00	05/24/12 20:00	1.00
ndeno (1,2,3-cd) pyrene	ND		0.0843	0.0428	mg/kg dry	5	05/23/12 14:00	05/24/12 20:00	1.00
Naphthalene	2.70		0.0843	0.0428	mg/kg dry	6	05/23/12 14:00	05/24/12 20:00	1.00
Phenanthrene	2.28		0.0843	0.0428	mg/kg dry	45	05/23/12 14:00	05/24/12 20:00	1.00
Pyrene	0.0985		0.0843	0.0428	mg/kg dry	0	05/23/12 14:00	05/24/12 20:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	69		18 - 120				05/23/12 14:00	05/24/12 20:00	1.00
2-Fluorobiphenyl	61		14 - 120				05/23/12 14:00	05/24/12 20:00	1.00
Vitrobenzene-d5	72		17 - 120				05/23/12 14:00	05/24/12 20:00	1.00

Method, Gridd ozrob - Folya	iomatic riyulocarbons by	EL MOLTOD - MET						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	7.99	0.843	0.428	mg/kg dry	0	05/23/12 14:00	05/25/12 14:28	10.0
2-Methylnaphthalene	16.0	0.843	0.428	mg/kg dry	0	05/23/12 14:00	05/25/12 14:28	10.0

Matrix: Soil

Percent Solids: 77.6

Lab Sample ID: NWE2371-03

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

TestAmerica Job ID: NWE2371

Matrix: Soil

Percent Solids: 77.6

Lab Sample ID: NWE2371-03

Client Sample ID: 396 Acorn-2 Date Collected: 05/17/12 12:15 Date Received: 05/19/12 08:20

Method: SW-846 - General Chemistry Parameters

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	77.6	0.500	0.500	%		05/21/12 09:53	05/22/12 09:05	1.00

Client Sample ID: 396 Acorn-1

Date Collected: 05/17/12 09:45 Date Received: 05/19/12 08:20

Lab Sample ID: NWE2371-04 Matrix: Soil Percent Solids: 76.4

Analyte	platile Organic Comp Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.00197		mg/kg dry	0	05/17/12 09:45	05/24/12 17:32	1.0
Ethylbenzene	0.0460		0.00197	0.00109		d	05/17/12 09:45	05/24/12 17:32	1.0
Toluene	ND		0.00197	0.00109	mg/kg dry	-6	05/17/12 09:45	05/24/12 17:32	1.0
Xylenes, total	0.00374	J	0.00494	0.00247	mg/kg dry	6	05/17/12 09:45	05/24/12 17:32	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	88	Quanner	70 - 130				05/17/12 09:45	05/24/12 17:32	
Dibromofluoromethane	90		70 - 130				05/17/12 09:45	05/24/12 17:32	1.0
Toluene-d8	134	ZX	70 - 130				05/17/12 09:45	05/24/12 17:32	
4-Bromofluorobenzene	139	ZX	70 - 130				05/17/12 09:45	05/24/12 17:32	1.0
+ Dromonadrobenzene	100	24	10-150				00/1/12 03.40	03/24/12 11.32	1.0
Method: SW846 8260B - Vo						21	dimmin.		2.02
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	0.999		0.263	0.132	mg/kg dry	10	05/17/12 09:45	05/28/12 22:41	50.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	93		70 - 130				05/17/12 09:45	05/28/12 22:41	50
Dibromofluoromethane	89		70 - 130				05/17/12 09:45	05/28/12 22:41	50
Toluene-d8	112		70 - 130				05/17/12 09:45	05/28/12 22:41	50
4-Bromofluorobenzene	113		70 - 130				05/17/12 09:45	05/28/12 22:41	50.
Method: SW846 8270D - Po	lyaromatic Hydroca	rbons by El	PA 8270D						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.0867	0.0440	mg/kg dry	52	05/23/12 14:00	05/24/12 20:22	1.0
Acenaphthylene	ND		0.0867	0.0440	mg/kg dry	ւ.	05/23/12 14:00	05/24/12 20:22	1.0
Anthracene	0.0487	J	0.0867	0.0440	mg/kg dry	Ø	05/23/12 14:00	05/24/12 20:22	1.0
Benzo (a) anthracene	ND		0.0867	0.0440	mg/kg dry	~	05/23/12 14:00	05/24/12 20:22	1.0
Benzo (a) pyrene	ND		0.0867	0.0440	mg/kg dry	ø	05/23/12 14:00	05/24/12 20:22	1.0
Benzo (b) fluoranthene	ND		0.0867	0.0440	mg/kg dry	0	05/23/12 14:00	05/24/12 20:22	1.0
Benzo (g.h.i) perylene	ND		0.0867	0.0440	mg/kg dry	.0	05/23/12 14:00	05/24/12 20:22	1.0
Benzo (k) fluoranthene	ND		0.0867	0.0440	mg/kg dry	9	05/23/12 14:00	05/24/12 20:22	1.0
Chrysene	ND		0.0867	0.0440	mg/kg dry	0	05/23/12 14:00	05/24/12 20:22	1.0
Dibenz (a,h) anthracene	ND		0.0867	0.0440	mg/kg dry	0	05/23/12 14:00	05/24/12 20:22	1.0
Fluoranthene	ND		0.0867	0.0440	mg/kg dry	6	05/23/12 14:00	05/24/12 20:22	1.0
Fluorene	0,213		0.0867	0.0440	mg/kg dry	0	05/23/12 14:00	05/24/12 20:22	1.0
ndeno (1,2,3-cd) pyrene	ND		0.0867	0.0440	mg/kg dry	÷.	05/23/12 14:00	05/24/12 20:22	1.00
laphthalene	0.276		0.0867	0.0440	mg/kg dry	¢	05/23/12 14:00	05/24/12 20:22	1.00
Phenanthrene	0.403		0.0867	0.0440	mg/kg dry	ġ.	05/23/12 14:00	05/24/12 20:22	1.00
yrene	ND		0.0867	0.0440	mg/kg dry	Ģ	05/23/12 14:00	05/24/12 20:22	1.00
-Methylnaphthalene	0.792		0.0867		mg/kg dry	4.6	05/23/12 14:00	05/24/12 20:22	1.00
-Methylnaphthalene	1.44		0.0867	0.0440	mg/kg dry	ø	05/23/12 14:00	05/24/12 20:22	1.00
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
erphenyl-d14	75		18 - 120				05/23/12 14:00	05/24/12 20:22	1.00
P-Fluorobiphenyl	59		14 - 120				05/23/12 14:00	05/24/12 20:22	1.00
litrobenzene-d5	.56		17 - 120				05/23/12 14:00	05/24/12 20:22	1.00
Nethod: SW-846 - General (Chemistry Parameter	5							
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 12E3392-BLK1											Client S	ample ID: Metho	od Blank
Matrix: Soil												Prep Typ	pe: Total
Analysis Batch: V008753												Prep Batch: 12	E3392_P
		Blank	Blank										
Analyte	F	Result	Qualifier	RL		MDL	Unit		D	F	Prepared	Analyzed	Dil Fac
Benzene		ND		0.00200	0.	00110	mg/k	g wet		05/2	24/12 00:52	2 05/24/12 11:37	1.00
Ethylbenzene		ND		0.00200	0.	00110	mg/k	g wet		05/2	24/12 00:52	05/24/12 11:37	1.00
Naphthalene		ND		0.00500	0.	00250	mg/k	g wet		05/2	24/12 00:52	05/24/12 11:37	1.00
Toluene		ND		0.00200	0.	00110	mg/k	g wet		05/2	24/12 00:52	05/24/12 11:37	1.00
Xylenes, total		ND		0.00500	0.	00250	mg/k	g wet		05/2	24/12 00:52	05/24/12 11:37	1.00
		Blank	Blank										
Surrogate			Qualifier	Limits						F	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	101100	104	quanner	70 - 130							24/12 00:52	and the second se	1.00
Dibromofluoromethane		101		70 - 130							24/12 00:52		1.00
Toluene-d8		111		70 - 130							24/12 00:52		1.00
4-Bromofluorobenzene		114		70 - 130							24/12 00:52		1.00
		04		10-100						00/2	-4/12 00.02	00/24/12 11.31	1.00
Lab Sample ID: 12E3392-BLK2											Client S	ample ID: Metho	d Blank
Matrix: Soil											eneme	Prep Typ	
Analysis Batch: V008753												Prep Batch: 12E	
	i	Blank	Blank									riop actorit fai	
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Benzene		ND		0,100	0	.0550	mg/kg	y wet		05/2	4/12 00:52	05/24/12 12:08	50.0
Ethylbenzene		ND		0.100	0	.0550	mg/kg	g wet		05/2	4/12 00:52	05/24/12 12:08	50.0
Naphthalene		ND		0.250		0.125	mg/kg	wet		05/2	4/12 00:52	05/24/12 12:08	50.0
Toluene		ND		0.100	0	.0550	mg/kg	y wet		05/2	4/12 00:52	05/24/12 12:08	50.0
Xylenes, total		ND		0.250		0.125	mg/kg	wet		05/2	4/12 00:52	05/24/12 12:08	50.0
			Blank								and the second second		-0.4 C
Surrogate	%Recc		Qualifier	Limits							repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4		108		70 - 130							4/12 00:52	05/24/12 12:08	50.0
Dibromofluoromethane		104		70 - 130							4/12 00:52	05/24/12 12:08	50.0
Toluene-d8		109		70 - 130							4/12 00:52		50.0
4-Bromofluorobenzene		114		70 - 130						05/2	4/12 00:52	05/24/12 12:08	50.0
Lab Sample ID: 12E3392-BS1									CI	inni	Samela	ID: Lab Control	Comula
Matrix: Soil									CI	iem	Sample		
Analysis Batch: V008753												Prep Typ	
Analysis baten. vovorss				Spike	LCS	LCS						Prep Batch: 12E %Rec.	.3392_P
Analyte				Added	Result		ifier	Unit		D	%Rec	Limits	
Benzene				50.0	47.1			ug/kg		-	94	75 - 127	
Ethylbenzene				50.0	46.9			ug/kg			94	80 - 134	
Naphthalene				50.0	43.2			ug/kg			86	69 - 150	
Toluene				50.0	48.6			ug/kg			97	80 - 132	
Xylenes, total				150	130			ug/kg			87	80 - 137	
				100	140			5			- 60		
	LCS			Sec. 1									
Surrogate	%Recovery	Quali	fier	Limits									
1,2-Dichloroethane-d4	98			70 - 130									
Dibromofluoromethane	100			70 - 130									
Toluene-d8	107			70 - 130									
4-Bromofluorobenzene	105			70 - 130									

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E3392-MS1								Client	Sample ID: Ma	trix Spike
Matrix: Soil									Prep Ty	pe: Total
Analysis Batch: V008753									Prep Batch: 12	2E3392_P
and a second sec	Sample	Sample	Spike	Matrix Spike	Matrix	Spike			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifi	er Unit	D	%Rec	Limits	
Benzene	0.00228		0.0443	0.0473		mg/kg wet		102	31 - 143	
Ethylbenzene	0.00604		0.0443	0.0526		mg/kg wet		105	23 - 161	
Naphthalene	0.0563		0.0443	0.0678		mg/kg wet		26	10 - 176	
Toluene	0.00130		0.0443	0.0525		mg/kg wet		116	30 - 155	
Xylenes, total	0.0176		0.133	0.143		mg/kg wet		94	25 - 162	
	Matrix Spike	Matrix Spike								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4	93		70 - 130							
Dibromofluoromethane	96		70 - 130							
Toluene-d8	114		70 - 130							
4-Bromofluorobenzene	108		70 - 130							
ab Sample ID: 1251202 MSD						CI	iont S		Matrix Spike I	Duplicato
Lab Sample ID: 12E3392-MSD						CI	lent S	ample in		
Matrix: Soil										pe: Total
Analysis Batch: V008753	Sample	Sample	Snike it	rix Spike Dup	Matrix	Spike Duu			Prep Batch: 12 %Rec.	RPD
Analyte		Qualifier	Added	Result			D	%Rec		PD Limit
Benzene	0.00228	Quanner	0.0415	0.0470	quanne	mg/kg wet	0	108		.7 50
Ethylbenzene	0.00604		0.0415	0.0489		mg/kg wet		103	23 - 161	7 50
Vaphthalene	0.0563		0.0415	0.0609		mg/kg wet		11		11 50
Foluene	0.00130		0.0415	0.0510		mg/kg wet		120	30 - 155	3 50
Kylenes, total	0.00130		0.124	0.129		mg/kg wet		90		10 50
sylenes, total	0.0170			0.123		mg/kg wei		50	23 - 102	10 50
	trix Spike Dup	Matrix Spike Du	State and second							
Surrogate		Qualifier	Limits							
,2-Dichloroethane-d4	95		70 - 130							
Dibromofluoromethane	97		70 - 130							
Toluene-d8	118		70 - 130							
t-Bromofluorobenzene	109		70 - 130							
ab Sample ID: 12E4185-BLK1								Client Sa	ample ID: Meth	od Blank
Matrix: Soil									Prep Ty	pe: Total
Analysis Batch: V008953									Prep Batch: 12	E4185 P
and a second to a second to	BI	lank Blank								
nalyte	Re	sult Qualifier		RL N	NDL U	nit D	P	repared	Analyzed	Dil Fac
enzene		ND	0.00	200 0.00	110 m	g/kg wet	05/2	8/12 00:33	05/28/12 15:01	1.00
thylbenzene		ND	0.00	200 0.00	110 m	g/kg wet	05/2	8/12 00:33	05/28/12 15:01	1.00
laphthalene		ND	0.00		250 mg			8/12 00:33	05/28/12 15:01	1.00

Toluene	ND		0.00200	0.00110	mg/kg wet	05/28/12 00:33	05/28/12 15:01	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet	05/28/12 00:33	05/28/12 15:01	1.00
	Blank	Blank						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	105		70 - 130			05/28/12 00:33	05/28/12 15:01	1.00
Dibromofluoromethane	103		70 - 130			05/28/12 00:33	05/28/12 15:01	1.00
Toluene-d8	115		70 - 130			05/28/12 00:33	05/28/12 15:01	1.00
4-Bromofluorobenzene	116		70 - 130			05/28/12 00:33	05/28/12 15:01	1.00

Prep Batch: 12E4185_P

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E4185-BLK2							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: V008953							ł	Prep Batch: 128	4185_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		05/28/12 00:33	05/28/12 15:31	50.0
Ethylbenzene	ND		0.100	0.0550	mg/kg wet		05/28/12 00:33	05/28/12 15:31	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		05/28/12 00:33	05/28/12 15:31	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		05/28/12 00:33	05/28/12 15:31	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		05/28/12 00:33	05/28/12 15:31	50.0
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	109		70 - 130				05/28/12 00:33	05/28/12 15:31	50.0
Dibromofluoromethane	103		70 - 130				05/28/12 00:33	05/28/12 15:31	50.0
Toluene-d8	129		70 - 130				05/28/12 00:33	05/28/12 15:31	50.0
4-Bromofluorobenzene	116		70 - 130				05/28/12 00:33	05/28/12 15:31	50.0
Lab Sample ID: 12E4185-BS1						c	lient Sample I	D: Lab Control	Sample
Matrix: Soil								Prep Typ	e: Total

Analysis Batch: V008953

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	44.4		ug/kg		89	75 - 127
Ethylbenzene	50.0	45.5		ug/kg		91	80 - 134
Naphthalene	50.0	38.2		ug/kg		76	69 - 150
Toluene	50.0	49.9		ug/kg		100	80 - 132
Xylenes, total	150	126		ug/kg		84	80 - 137

LUS	LUS	
%Recovery	Qualifier	Limits
108		70 - 130
103		70 - 130
121		70 - 130
106		70 - 130
	%Recovery 108 103 121	108 103 121

Lab Sample ID: 12E4185-BSD1 Matrix: Soil

Analysis Batch: V008953

Client Sample ID: Lab Control Sample Dup
Prep Type: Total
Prep Batch: 12E4185_P

	Spike	LCS Dup LCS	S Dup			%Rec.		RPD
Analyte	Added	Result Qua	alifier Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	45.3	ug/kg		91	75 - 127	2	50
Ethylbenzene	50.0	47.0	ug/kg		94	80 - 134	3	50
Naphthalene	50.0	40.4	ug/kg		81	69 - 150	6	50
Toluene	50.0	48.3	ug/kg		97	80 - 132	3	50
Xylenes, total	150	131	ug/kg		88	80 - 137	4	50

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	109		70 - 130
Dibromofluoromethane	104		70 - 130
Toluene-d8	115		70 - 130
4-Bromofluorobenzene	105		70 - 130

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E4185-MS1								Client	Sample ID: Matrix Spike Prep Type: Tota	
Matrix: Soil Analysis Batch: V008953	Cample	Sample	Spike	Matrix Spike	Matrix Spi	ka			Prep Batch: 12E4185_P %Rec.	
27.4.47					1.000		D	0/ Dee	Limits	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec		
Benzene	ND		2.50	2.16		mg/kg wel		86	31 - 143	
Ethylbenzene	0.152		2.50	2.68		mg/kg wel		101	23 - 161	
Naphthalene	0.727		2.50	2.93		mg/kg wet		88	10 - 176	
Toluene	ND		2.50	2.48		mg/kg wet		99	30 - 155	
Xylenes, total	1.15		7.50	8.01		mg/kg wet		91	25 - 162	
	Matrix Spike	Matrix Spike								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4	92		70 - 130							
Dibromofluoromethane	.94		70 - 130							
Toluene-d8	113		70 - 130							
4-Bromofluorobenzene	116		70 - 130							
Lab Sample ID: 12E4185-MSD	t					Cli	ent Sa	ample ID): Matrix Spike Duplicate	

Lab Sample ID: 12E4185-MSD1 Matrix: Soil Analysis Batch: V008953

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limits Benzene ND 2,50 2,38 mg/kg wet 95 31 - 143 10 55 Ethylbenzene 0.152 2,50 3.06 mg/kg wet 116 23 - 161 13 55 Naphthalene 0.727 2,50 2,17 mg/kg wet 58 10 - 176 30 55 Toluene ND 2,50 2,80 mg/kg wet 112 30 - 155 12 55	Analysis Baten. Vooosoo	Sample	Sample	Snike	trix Spike Dup	Matrix Spi	ke Dui			%Rec.		RPD
Ethylbenzene 0.152 2.50 3.06 mg/kg wel 116 23 - 161 13 55 Naphthalene 0.727 2.50 2.17 mg/kg wel 58 10 - 176 30 55 Toluene ND 2.50 2.80 mg/kg wet 112 30 - 155 12 55	Analyte							D	%Rec		RPD	Limit
Naphthalene 0.727 2.50 2.17 mg/kg wet 58 10 - 176 30 55 Toluene ND 2.50 2.80 mg/kg wet 112 30 - 155 12 55	Benzene	ND		2,50	2,38		mg/kg wet		95	31 - 143	10	50
Toluene ND 2.50 2.80 mg/kg wet 112 30 - 155 12 55	Ethylbenzene	0.152		2.50	3.06		mg/kg wet		116	23 - 161	13	50
	Naphthalene	0.727		2.50	2.17		mg/kg wet		58	10 - 176	30	50
Xylenes total 1.15 7.50 8.96 mg/kg wel 104 25 - 162 11 5	Toluene	ND		2.50	2.80		mg/kg wet		112	30 - 155	12	50
	Xylenes, total	1.15		7.50	8.96		mg/kg wet		104	25 - 162	11	50

	Matrix Spike Dup	Matrix Spike Dup				
Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4	72		70 - 130			
Dibromofluoromethane	87		70 - 130			
Toluene-d8	116		70 - 130			
4-Bromofluorobenzene	117		70 - 130			

Lab Sample ID: 12E5635-BLK1 Matrix: Soil

Analysis Batch: V008819

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 12E5635_P

Prep Type: Total

Prep Batch: 12E4185 P

randi yolo Bacolli i oodo ib									
and the second second second second	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		05/25/12 09:16	05/25/12 11:49	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		05/25/12 09:16	05/25/12 11:49	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		05/25/12 09:16	05/25/12 11:49	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		05/25/12 09:16	05/25/12 11:49	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		05/25/12 09:16	05/25/12 11:49	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	100		70 - 130				05/25/12 09:16	05/25/12 11:49	1.00
Dibromofluoromethane	100		70 - 130				05/25/12 09:16	05/25/12 11:49	1.00
Toluene-d8	106		70 - 130				05/25/12 09:16	05/25/12 11:49	1.00
4-Bromofluorobenzene	109		70 - 130				05/25/12 09:16	05/25/12 11:49	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E5635-BLK2							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e; Total
Analysis Batch: V008819							F	Prep Batch: 12E	5635_P
ACTU-CA BOART STREET	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		05/25/12 09:16	05/25/12 12:20	50.0
Ethylbenzene	ND		0.100	0.0550	mg/kg wet		05/25/12 09:16	05/25/12 12:20	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		05/25/12 09:16	05/25/12 12:20	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		05/25/12 09:16	05/25/12 12:20	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		05/25/12 09:16	05/25/12 12:20	50.0
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	99		70 - 130				05/25/12 09:16	05/25/12 12:20	50.0
Dibromofluoromethane	102		70 - 130				05/25/12 09:16	05/25/12 12:20	50.0
Toluene-d8	106		70 - 130				05/25/12 09:16	05/25/12 12:20	50.0
4-Bromofluorobenzene	110		70 - 130				05/25/12 09:16	05/25/12 12:20	50.0

Lab Sample ID: 12E5635-BS1 Matrix: Soil Analysis Batch: V008819

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	50.8		ug/kg		102	75 - 127
Ethylbenzene	50.0	51.6		ug/kg		103	80 - 134
Naphthalene	50.0	47.4		ug/kg		95	69 - 150
Toluene	50.0	53.4		ug/kg		107	80 - 132
Xylenes, total	150	143		ug/kg		96	80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	98		70 - 130
Dibromofluoromethane	99		70 - 130
Toluene-d8	108		70 - 130
4-Bromofluorobenzene	106		70 - 130

Lab Sample ID: 12E5635-BSD1 Matrix: Soil

Matrix, oon									
Analysis Batch: V008819							Prep Batc	h: 12E5	635_P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	53.0		ug/kg		106	75 - 127	4	50
Ethylbenzene	50.0	51.4		ug/kg		103	80 - 134	0.4	50
Naphthalene	50.0	47.6		ug/kg		95	69 - 150	0.4	50
Toluene	50.0	51.9		ug/kg		104	80 - 132	3	50
Xylenes, total	150	141		ug/kg		94	80 - 137	1	50

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	97		70 - 130
Dibromofluoromethane	100		70 - 130
Toluene-d8	105		70 - 130
4-Bromofluorobenzene	103		70 - 130

D	%Rec	Limits	RPD	Limit	
	106	75 - 127	4	50	
	103	80 - 134	0.4	50	

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Type: Total

Prep Batch: 12E5635_P

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Blank Blank

Lab Sample ID: 12E3780-BLK1 Matrix: Soil Analysis Batch: 12E3780

				Client Sa	mple ID: Metho	d Blank	
					Prep Typ	e: Total	
				F	Prep Batch: 128	3780_P	
RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Acenaphthylene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Anthracene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Benzo (a) anthracene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Benzo (a) pyrene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Benzo (b) fluoranthene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Benzo (g,h,i) perylene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Benzo (k) fluoranthene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Chrysene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Dibenz (a,h) anthracene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Fluoranthene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Fluorene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Indeno (1,2,3-cd) pyrene	ND		0.0670	0.0340	mg/kg wel		05/23/12 14:00	05/24/12 13:11	1.00	
Naphthalene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Phenanthrene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
Pyrene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
1-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	
2-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		05/23/12 14:00	05/24/12 13:11	1.00	

	Blank Bl	lank				
Surrogate	%Recovery Qu	ualifier L	imits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	81	7.	8 - 120	05/23/12 14:00	05/24/12 13:11	1.00
2-Fluorobiphenyl	60	1.	4 - 120	05/23/12 14:00	05/24/12 13:11	1.00
Nitrobenzene-d5	58	1	7 - 120	05/23/12 14:00	05/24/12 13:11	1.00

Lab Sample ID: 12E3780-BS1 Matrix: Soil Analysis Batch: 12E3780

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 12E3780_P

Spike	LCS LCS			%Rec.
Added	Result Qual	ifier Unit	D %Re	c Limits
1.67	1.28	mg/kg wet	7	7 36 - 120
1.67	1.29	mg/kg wet	7	8 38 - 120
1.67	1.39	mg/kg wet	8	4 46 - 124
1.67	1.50	mg/kg wet	9	0 45 - 120
1.67	1.52	mg/kg wet	9	1 45 - 120
1.67	1.48	mg/kg wet	8	9 42 - 120
1.67	1.34	mg/kg wet	8	0 38 - 120
1.67	1.34	mg/kg wet	8	0 42 - 120
1.67	1.40	mg/kg wet	8	4 43 - 120
1.67	1.42	mg/kg wet	8	5 32 - 128
1.67	1.41	mg/kg wet	8	4 46 - 120
1.67	1.37	mg/kg wet	8	2 42 - 120
1.67	1.37	mg/kg wet	8	2 41 - 121
1.67	1.31	mg/kg wet	7	9 32 - 120
1.67	1.36	mg/kg wet	8	1 45 - 120
1,67	1.43	mg/kg wet	8	6 43 - 120
1.67	0.960	mg/kg wet	5	8 32 - 120
1.67	1.26	mg/kg wet	7	6 28 - 120
	Added 1.67	Added Result Qual 1.67 1.28 1.67 1.29 1.67 1.39 1.67 1.50 1.67 1.52 1.67 1.48 1.67 1.34 1.67 1.34 1.67 1.42 1.67 1.42 1.67 1.41 1.67 1.37 1.67 1.37 1.67 1.31 1.67 1.36 1.67 1.43 1.67 1.43	AddedResultQualifierUnit1.671.28mg/kg wet1.671.29mg/kg wet1.671.39mg/kg wet1.671.50mg/kg wet1.671.52mg/kg wet1.671.48mg/kg wet1.671.34mg/kg wet1.671.34mg/kg wet1.671.48mg/kg wet1.671.40mg/kg wet1.671.41mg/kg wet1.671.41mg/kg wet1.671.37mg/kg wet1.671.31mg/kg wet1.671.33mg/kg wet1.671.34mg/kg wet1.671.31mg/kg wet1.671.33mg/kg wet1.671.43mg/kg wet1.671.43mg/kg wet1.670.960mg/kg wet	Added Result Qualifier Unit D %Re 1.67 1.28 mg/kg wet 7 1.67 1.29 mg/kg wet 7 1.67 1.29 mg/kg wet 7 1.67 1.39 mg/kg wet 8 1.67 1.50 mg/kg wet 9 1.67 1.52 mg/kg wet 9 1.67 1.52 mg/kg wet 8 1.67 1.48 mg/kg wet 8 1.67 1.34 mg/kg wet 8 1.67 1.48 mg/kg wet 8 1.67 1.34 mg/kg wet 8 1.67 1.40 mg/kg wet 8 1.67 1.41 mg/kg wet 8 1.67 1.37 mg/kg wet 8 1.67 1.31 mg/kg wet 8 1.67 1.36 mg/kg wet 8 1.67 1.36 mg/kg wet 8 1.67

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12E3780-BS1						(Clien	Sample	e ID: Lab C	ontrol S	ample
Matrix: Soil									Pr	ep Type:	: Total
Analysis Batch: 12E3780									Prep Bate	h: 12E3	780_P
	100	LCS									
			Limits								
Surrogate	%Recovery										
Terphenyl-d14	78		18 - 120								
2-Fluorobiphenyl	58		14 - 120								
Nitrobenzene-d5	54		17 - 120								
Lab Sample ID: 12E3780-BSD	1					Client	t San	ple ID:	Lab Contro	Sampl	le Dup
Matrix: Soil									Pre	ep Type:	: Total
Analysis Batch: 12E3780									Prep Bato	:h: 12E3	780_P
Constant and Condition of a section of			Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene			1.67	1.26		mg/kg wet		75	36 - 120	2	50
Acenaphthylene			1.67	1.29		mg/kg wet		78	38 - 120	0.03	50
Anthracene			1,67	1.37		mg/kg wet		82	46 - 124	1	49
Benzo (a) anthracene			1.67	1.47		mg/kg wet		88	45 - 120	2	50
Benzo (a) pyrene			1.67	1.49		mg/kg wet		89	45 - 120	2	50
Benzo (b) fluoranthene			1.67	1.46		mg/kg wet		88	42 - 120	1	50
Benzo (g,h,i) perylene			1.67	1.27		mg/kg wet		76	38 - 120	5	50
Benzo (k) fluoranthene			1.67	1.29		mg/kg wet		77	42 - 120	4	45
Chrysene			1.67	1.37		mg/kg wet		82	43 - 120	2	49
Dibenz (a,h) anthracene			1.67	1.35		mg/kg wet		81	32 - 128	5	50
Fluoranthene			1.67	1.37		mg/kg wet		82	46 - 120	3	50
Fluorene			1.67	1.36		mg/kg wel		82	42 - 120	0.3	50
Indeno (1,2,3-cd) pyrene			1.67	1.33		mg/kg wet		80	41 - 121	3	50
Naphthalene			1.67	1.29		mg/kg wet		77	32 - 120	2	50
Phenanthrene			1.67	1.35		mg/kg wet		81	45 - 120	0.5	50
Pyrene			1.67	1.44		mg/kg wet		86	43 - 120	1	50
1-Methylnaphthalene			1.67	0.945		mg/kg wet		57	32 - 120	2	50
2-Methylnaphthalene			1.67	1.26		mg/kg wet		76	28 - 120	0.4	50
	LCS Dup	LCS Dup									
Surrogate	%Recovery		Limits								
Terphenyl-d14	82	C.L. B. M. Marth	18 - 120								
2-Fluorobiphenyl	59		14 - 120								
	1.22		343 375								

Lab Sample ID: 12E3780-MS1 Matrix: Soil

Analysis Batch: 12E3780

Nitrobenzene-d5

Analysis Batch: 12E3780	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			Prep Batch: 12E3780_P %Rec.
Analyte	1000	Qualifier	Added	111010 (D) (C 1010	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.0820		1.96	ND	A-01	mg/kg dry	9	-4	19 - 120
Acenaphthylene	0.183		1.96	0.0427	A-01 J	mg/kg dry	0	-7	25 - 120
Anthracene	0.302		1,96	0.0845	A-01	mg/kg dry	ō	-11	28 - 125
Benzo (a) anthracene	1.32		1.96	0.378	A-01	mg/kg dry	φ	-48	23 - 120
Benzo (a) pyrene	1.28		1.96	0.353	A-01	mg/kg dry	0	-47	15 - 128
Benzo (b) fluoranthene	1.57		1.96	0.443	A-01	mg/kg dry	¢	-58	12 - 133
Benzo (g.h.i) perylene	0.752		1.96	0.209	A-01	mg/kg dry	.0	-28	22 - 120
Benzo (k) fluoranthene	0.575		1.96	0.145	A-01	mg/kg dry	12	-22	28 - 120
Chrysene	1.33		1.96	0.388	A-01	mg/kg dry	ø	-48	20 - 120
Dibenz (a,h) anthracene	0.166		1.96	0.0481	A-01 J	mg/kg dry	12	-6	12 - 128
Fluoranthene	2.64		1.96	0.783	A-01	mg/kg dry	2	-95	10 - 143

17 - 120

55

Client Sample ID: Matrix Spike

Prep Type: Total

Client Sample ID: Matrix Spike

Prep Type: Total

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

56

Lab Sample ID: 12E3780-MS1 Matrix: Soil

Matrix, Son									Fich is ber fordi
Analysis Batch: 12E3780									Prep Batch: 12E3780_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Fluorene	0.145		1.96	ND	A-01	mg/kg dry	\$	-7	20 - 120
Indeno (1,2,3-cd) pyrene	0.650		1.96	0.170	A-01	mg/kg dry	0	-25	22 - 121
Naphthalene	ND		1.96	ND	A-01	mg/kg dry	0		10 - 120
Phenanthrene	1.67		1.96	0.481	A-01	mg/kg dry	a.	-61	21 - 122
Pyrene	2.59		1.96	0.765	A-01	mg/kg dry	-3	-93	20 - 123
1-Methylnaphthalene	ND		1.96	ND	A-01	mg/kg dry	a,		10 - 120
2-Methylnaphthalene	ND		1.96	ND	A-01	mg/kg dry	0		13 - 120
	Matrix Spike	Matrix Spike							
Surrogate	%Recovery	Qualifier	Limits						
Terphenyl-d14	77		18 - 120						
2-Fluorobiphenyl	57		14 - 120						

17 - 120

Lab Sample ID: 12E3780-MSD1 Matrix: Soil Analysis Batch: 12E3780

Nitrobenzene-d5

Analysis Batch: 12E3/80									Frep batt	11, 1203	TOU F	
and the second se	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Duj			%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acenaphthene	0.0820		1.97	1.10		mg/kg dry	φ.	51	19 - 120		50	
Acenaphthylene	0.183		1.97	1.17		mg/kg dry	ò	50	25 - 120	186	50	
Anthracene	0.302		1.97	1.22		mg/kg dry	÷	47	28 - 125	174	49	
Benzo (a) anthracene	1.32		1.97	1.37		mg/kg dry	ø	3	23 - 120	113	50	
Benzo (a) pyrene	1.28		1.97	1.37		mg/kg dry	4	5	15 - 128	118	50	
Benzo (b) fluoranthene	1.57		1.97	1.37		mg/kg dry	4	-10	12 - 133	102	50	
Benzo (g,h,i) perylene	0.752		1.97	1.15		mg/kg dry	10	20	22 - 120	139	50	
Benzo (k) fluoranthene	0.575		1.97	1.10		mg/kg dry	\$	27	28 - 120	153	45	
Chrysene	1.33		1.97	1.26		mg/kg dry	10	-4	20 - 120	106	49	
Dibenz (a,h) anthracene	0.166		1.97	1.15		mg/kg dry	10	50	12 - 128	184	50	
Fluoranthene	2.64		1.97	1.39		mg/kg dry	1	-63	10 - 143	56	50	
Fluorene	0.145		1,97	1.18		mg/kg dry	9	53	20 - 120		50	
Indeno (1,2,3-cd) pyrene	0.650		1.97	1.17		mg/kg dry	8	26	22 - 121	149	50	
Naphthalene	ND		1.97	1.14		mg/kg dry	n	58	10 - 120		50	
Phenanthrene	1.67		1.97	1.32		mg/kg dry	a	-18	21 - 122	93	50	
Pyrene	2.59		1.97	1.48		mg/kg dry	0	-56	20 - 123	64	50	
1-Methylnaphthalene	ND		1.97	0.854		mg/kg dry	.6	43	10 - 120		50	
2-Methylnaphthalene	ND		1.97	1.13		mg/kg dry	P	57	13 - 120		50	
	Matrix Spike Dup	Matrix Spike	Dup									
Surrogate	%Recovery	Qualifier	Limits									

Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	57		18 - 120
2-Fluorobiphenyl	39		14 - 120
Nitrobenzene-d5	35		17 - 120

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Prep Batch: 12E3780 P

K

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 12E4519-DUP1	12						Client Sample ID: Dup	olicate	
Matrix: Soil						Prep Type: 1			
Analysis Batch: 12E4519							Prep Batch: 12E4	519_P	
	Sample	Sample	Duplicate	Duplicate				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
% Dry Solids	79.1		78.7		%		0.6	20	

QC Association Summary

ß

GCMS Volatiles

Analysis Batch: V008753

Analysis Doten. vou	135				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3392-BLK1	Method Blank	Total	Soil	SW846 8260B	12E3392_P
12E3392-BLK2	Method Blank	Total	Soil	SW846 8260B	12E3392_P
12E3392-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E3392_P
12E3392-MS1	Matrix Spike	Total	Soil	SW846 8260B	12E3392_P
12E3392-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12E3392_P
NWE2371-01	1479 Cardinal	Total	Soil	SW846 8260B	12E3392_P
NWE2371-02	1202 Cardinal	Total	Soil	SW846 8260B	12E3392_P
NWE2371-03	396 Acom-2	Total	Soil	SW846 8260B	12E3392_P
NWE2371-04	396 Acorn-1	Total	Soil	SW846 8260B	12E3392_P
Analysis Batch: V008	819				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5635-BLK1	Method Blank	Total	Soil	SW846 8260B	12E5635_P
12E5635-BLK2	Method Blank	Total	Soil	SW846 8260B	12E5635_P
12E5635-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E5635_P
12E5635-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	12E5635_P
NWE2371-02 - RE1	1202 Cardinal	Total	Soil	SW846 8260B	12E5635_P
Analysis Batch: V008	953				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E4185-BLK1	Method Blank	Total	Soil	SW846 8260B	12E4185 P
12E4185-BLK2	Method Blank	Total	Soil	SW846 8260B	12E4185_P
12E4185-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E4185_P
12E4185-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	12E4185_P
12E4185-MS1	Matrix Spike	Total	Soil	SW846 8260B	12E4185_P
12E4185-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12E4185_P
NWE2371-01 - RE1	1479 Cardinal	Total	Soil	SW846 8260B	12E4185 P
NWE2371-03 - RE1	396 Acorn-2	Total	Soil	SW846 8260B	12E4185 P
NWE2371-04 - RE1	396 Acorn-1	Total	Soil	SW846 8260B	12E4185_P
Prep Batch: 12E3392_	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID 12E3392-BLK1	Method Blank	Total	Soil	EPA 5035	Thep Baten
12E3392-BLK2	Method Blank	Total	Soil	EPA 5035	
12E3392-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E3392-MS1	Matrix Spike	Total	Soil	EPA 5035	
12E3392-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWE2371-01	1479 Cardinal	Total	Soil	EPA 5035	
NWE2371-02	1202 Cardinal	Total	Soil	EPA 5035	
NWE2371-03	396 Acorn-2	Total	Soil	EPA 5035	
NWE2371-03	396 Acorn-1	Total	Soil	EPA 5035	
Prep Batch: 12E4185_	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E4185-BLK1	Method Blank	Total	Soil	EPA 5035	Trop Datan
12E4185-BLK2	Method Blank	Total	Soil	EPA 5035	
12E4185-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E4185-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
12E4185-MS1	Matrix Spike	Total	Soil	EPA 5035	
12E4185-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWE2371-01 - RE1	1479 Cardinal	Total	Soil	EPA 5035	
NWE2371-03 - RE1	396 Acorn-2	Total	Soil	EPA 5035	
11112201 1-09 - AE1	oo noome	(Stat			

QC Association Summary

GCMS Volatiles (Continued)

Prep Batch: 12E4185_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NWE2371-04 - RE1	396 Acorn-1	Total	Soil	EPA 5035	
Prep Batch: 12E5635_	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5635-BLK1	Method Blank	Total	Soil	EPA 5035	
12E5635-BLK2	Method Blank	Total	Soil	EPA 5035	
12E5635-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E5635-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
NWE2371-02 - RE1	1202 Cardinal	Total	Soil	EPA 5035	

GCMS Semivolatiles

Analysis Batch: 12E3780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3780-BLK1	Method Blank	Total	Soil	SW846 8270D	12E3780_P
12E3780-BS1	Lab Control Sample	Total	Soil	SW846 8270D	12E3780_P
12E3780-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8270D	12E3780_P
12E3780-MS1	Matrix Spike	Total	Soil	SW846 8270D	12E3780_P
12E3780-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8270D	12E3780_P
NWE2371-01 - RE1	1479 Cardinal	Total	Soil	SW846 8270D	12E3780_P
NWE2371-02	1202 Cardinal	Total	Soil	SW846 8270D	12E3780_P
NWE2371-03	396 Acorn-2	Total	Soil	SW846 8270D	12E3780_P
NWE2371-03 - RE1	396 Acorn-2	Total	Soil	SW846 8270D	12E3780_P
NWE2371-04	396 Acorn-1	Total	Soil	SW846 8270D	12E3780_P
Prep Batch: 12E3780	Р				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3780-BLK1	Method Blank	Total	Soil	EPA 3550C	
12E3780-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
12E3780-BSD1	Lab Control Sample Dup	Total	Soil	EPA 3550C	
12E3780-MS1	Matrix Spike	Total	Soil	EPA 3550C	
12E3780-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 3550C	
NWE2371-01 - RE1	1479 Cardinal	Total	Soil	EPA 3550C	
NWE2371-02	1202 Cardinal	Total	Soil	EPA 3550C	

Total

Total

Total

Soil

Soil

Soil

Soil

EPA 3550C

EPA 3550C

EPA 3550C

% Solids

Extractions

NWE2371-01

NWE2371-03

NWE2371-04

NWE2371-03 - RE1

Analysis Batch: 12E4519

396 Acorn-2

396 Acorn-2

396 Acorn-1

1479 Cardinal

and the second se					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E4519-DUP1	Duplicate	Total	Soil	SW-846	12E4519_P
NWE2371-01	1479 Cardinal	Total	Soil	SW-846	12E4519_P
NWE2371-02	1202 Cardinal	Total	Soil	SW-846	12E4519_P
NWE2371-03	396 Acorn-2	Total	Soil	SW-846	12E4519_P
NWE2371-04	396 Acorn-1	Total	Soil	SW-846	12E4519_P
Prep Batch: 12E4519	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E4519-DUP1	Duplicate	Total	Soil	% Solids	

Total

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Extractions (Continued)

Prep Batch: 12E4519_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NWE2371-02	1202 Cardinal	Total	Soil	% Solids	
NWE2371-03	396 Acorn-2	Total	Soil	% Solids	
NWE2371-04	396 Acorn-1	Total	Soil	% Solids	

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Client Sample ID: 1479 Cardinal

Date Collected: 05/14/12 13:45 Date Received: 05/19/12 08:20

Lab Sample ID: NWE2371-01

Matrix: Soil Percent Solids: 75.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.782	12E3392_P	05/14/12 13:45	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V008753	05/24/12 16:00	ККК	TAL NSH
Total	Prep	EPA 5035	RE1	0.992	12E4185_P	05/14/12 13:45	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	50.0	V008953	05/28/12 21:39	KKK	TAL NSH
Total	Prep	EPA 3550C	RE1	0.995	12E3780_P	05/23/12 14:00	TRF	TAL NSH
Total	Analysis	SW846 8270D	RE1	10.0	12E3780	05/25/12 14:05	BES	TAL NSH
Total	Prep	% Solids		1.00	12E4519_P	05/21/12 09:53	KDJ	TAL NSH
Total	Analysis	SW-846		1.00	12E4519	05/22/12 09:05	KDJ	TAL NSH

Client Sample ID: 1202 Cardinal

Date Collected: 05/15/12 14:15 Date Received: 05/19/12 08:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.12	12E3392_P	05/15/12 14:15	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V008753	05/24/12 16:30	ККК	TAL NSH
Total	Prep	EPA 5035	RE1	1.05	12E5635_P	05/15/12 14:15	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	1.00	V008819	05/25/12 12:50	KKK	TAL NSH
Total	Prep	EPA 3550C		0.994	12E3780_P	05/23/12 14:00	TRF	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E3780	05/24/12 19:37	BES	TAL NSH
Total	Prep	% Solids		1.00	12E4519_P	05/21/12 09:53	KDJ	TAL NSH
Total	Analysis	SW-846		1.00	12E4519	05/22/12 09:05	KDJ	TAL NSH

Client Sample ID: 396 Acorn-2 Date Collected: 05/17/12 12:15

Date Received: 05/19/12 08:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.938	12E3392_P	05/17/12 12:15	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V008753	05/24/12 17:01	KKK	TAL NSH
Total	Prep	EPA 5035	RE1	0.888	12E4185_P	05/17/12 12:15	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	50.0	V008953	05/28/12 22:10	ККК	TAL NSH
Total	Prep	EPA 3550C		0,976	12E3780_P	05/23/12 14:00	TRF	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E3780	05/24/12 20:00	BES	TAL NSH
Total	Prep	EPA 3550C	RE1	0.976	12E3780_P	05/23/12 14:00	TRF	TAL NSH
Total	Analysis	SW846 8270D	RE1	10.0	12E3780	05/25/12 14:28	BES	TAL NSH
Total	Prep	% Solids		1.00	12E4519_P	05/21/12 09:53	KDJ	TAL NSH
Total	Analysis	SW-846		1.00	12E4519	05/22/12 09:05	KDJ	TAL NSH

Lab Sample ID: NWE2371-02 Matrix: Soil

Percent Solids: 88.3

Lab Sample ID: NWE2371-03

Matrix: Soil Percent Solids: 77.6 Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Client Sample ID: 396 Acorn-1 Date Collected: 05/17/12 09:45 Date Received: 05/19/12 08:20

Lab Sample ID: NWE2371-04 Matrix: Soil Percent Solids: 76.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.754	12E3392_P	05/17/12 09:45	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V008753	05/24/12 17:32	ккк	TAL NSH
Total	Prep	EPA 5035	RE1	0.804	12E4185_P	05/17/12 09:45	AAN	TAL NSH
fotal	Analysis	SW846 8260B	RE1	50.0	V008953	05/28/12 22:41	KKK	TAL NSH
olal	Prep	EPA 3550C		0.988	12E3780_P	05/23/12 14:00	TRF	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E3780	05/24/12 20:22	BES	TAL NSH
Total	Prep	% Solids		1.00	12E4519_P	05/21/12 09:53	KDJ	TAL NSH
otal	Analysis	SW-846		1.00	12E4519	05/22/12 09:05	KDJ	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Certification Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
TestAmerica Nashville	Alabama	State Program	4	41150
TestAmerica Nashville	Alaska (UST)	State Program	10	UST-087
TestAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
TestAmerica Nashville	California	NELAC	9	1168CA
TestAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada	_	3744
TestAmerica Nashville	Colorado	State Program	8	N/A
TestAmerica Nashville	Connecticut	State Program	1	PH-0220
TestAmerica Nashville	Florida	NELAC	4	E87358
TestAmerica Nashville	Illinois	NELAC	5	200010
TestAmerica Nashville	lowa	State Program	7	131
TestAmerica Nashville	Kansas	NELAC	7	E-10229
TestAmerica Nashville	Kentucky	State Program	4	90038
TestAmerica Nashville	Kentucky (UST)	State Program	4	19
TestAmerica Nashville	Louisiana	NELAC	6	30613
TestAmerica Nashville	Louisiana	NELAC	6	LA110014
TestAmerica Nashville	Maryland	State Program	3	316
TestAmerica Nashville	Massachusetts	State Program	1	M-TN032
TestAmerica Nashville	Minnesota	NELAC	5	047-999-345
TestAmerica Nashville	Mississippi	State Program	4	N/A
TestAmerica Nashville	Montana (UST)	State Program	8	NA
TestAmerica Nashville	New Hampshire	NELAC	1	2963
TestAmerica Nashville	New Jersey	NELAC	2	TN965
TestAmerica Nashville	New York	NELAC	2	11342
TestAmerica Nashville	North Carolina DENR	State Program	4	387
TestAmerica Nashville	North Dakota	State Program	8	R-146
TestAmerica Nashville	Ohio VAP	State Program	5	CL0033
TestAmerica Nashville	Oklahoma	State Program	6	9412
TestAmerica Nashville	Oregon	NELAC	10	TN200001
TestAmerica Nashville	Pennsylvania	NELAC	3	68-00585
TestAmerica Nashville	Rhode Island	State Program	1	LAO00268
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	Tennessee	State Program	4	2008
TestAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
TestAmerica Nashville	USDA	Federal		S-48469
TestAmerica Nashville	Utah	NELAC	8	TAN
TestAmerica Nashville	Virginia	NELAC	3	460152
TestAmerica Nashville	Virginia	State Program	3	00323
TestAmerica Nashville	Washington	State Program	10	C789
TestAmerica Nashville	West Virginia DEP	State Program	3	219
TestAmerica Nashville	Wisconsin	State Program	5	998020430
TestAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Addre City/State/Z	Nashville Division 2960 Foster Creighton Nashville, TN 37204 #: EEG - SBG # 2449 s: 10179 Highway 78 p: Ladson, SC 29456 r: Tom McElwee email: mcelwee@eeginc.net r: 843.412.2097 nt) Raatt Shatw	Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404	To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? Compliance Monitoring? Enforcement Action? Site State: SC PO#:	YesNo YesNo
Sample ID / Description 1479 CARDINA 1202 CARDINA 396 ACORN-J 396 ACORN-J 		2 21	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Page 27 of 27
Relinquished by:	5/18/12 1000 /	pived by: Date Date	FEDEX Temperature Upon Receipt: Time VOCs Free of Headspace? Time Time Time Time	Y

ATTACHMENT A

NON-HAZARDOUS MANIFEST

1	. Generator's US EP/	A ID No. Ma	anifest Doc N	lo.	2. Page 1	of					
NON-HAZARDOUS MANIFEST					1						
3. Generator's Mailing Address:	Gen	erator's Site Address (If a	ifferent than ma	iline).	A. Manife	est Number					
MCAS, BEAUFORT	erator s site Address (ira	merent than ma	ining/.		MNA	0021	6926				
LAUREL BAY HOUSING					00		0031				
BEAUFORT, SC 29907						B. State	Generator'	SID			
4. Generator's Phone 843-228-	6461										
5. Transporter 1 Company Name	-0401	6. US EPA ID	Number		-	Con success	-	-			
5. Transporter 1 company wante		O. OSTAIL	runnber		C. State T	ransporter's I	D		-		
EEG, INC.		1 La Lie Th				orter's Phone					
7. Transporter 2 Company Name		8. US EPA ID) Number		D. Hansp	orter s r none					
					E. State Transporter's ID						
A DELANDER						orter's Phone			Piv-In-		
9. Designated Facility Name and Site Ad	dress	10. US EPA	D Number			MS Chine		1.1.5.6			
HICKORY HILL LANDFILL					G. State F	acility ID					
2621 LOW COUNTRY ROAD					H. State F	acility Phone 843-987-4643					
RIDGELAND, SC 29936		1.	75-76-71	14.20	177152	11162.12	1 - 1 - 1 - 1	100	1000		
		A MARK & STAN			10.00	Style 1	all dis	10 2	1-20		
11. Description of Waste Materials			12. Con		13. Total Quantity	14. Unit	L. P	Misc. Comme	ents		
a. HEATING OIL TANKS FILLED W			No.	Туре	Quantity	Wt./Vol.					
a. HEATING OIL TANKS FILLED W	ITH SAND					1 10 10	1.2				
	# 102655SC			THE STREET	P.S. W. M. D.M.	1000					
WM Profile #	# 1020555C			11.545.1.6							
b.					1. C.O.	1.25					
				Line of a							
WM Profile #					Call N			1949			
с.						A COLUMN					
WM Profile #	- Sat byne			The second		A A			5530		
d.			100		10.90 S	10000	1.1.1				
			200		2417						
WM Profile #			all and the		13 11 12						
J. Additional Descriptions for Materials	Listed Above		K. Disposa	Location							
			-								
			Cell	_			Level				
	Pri 11.6		Grid	VIII	ELL	1	C) I	200			
15. Special Handling Instructions and Add	ditional Information	12 Bobwhit	1 4)411	CIDER	bERR	10)1	202	1. 1		
	12 -Jat	11 0 00	A	INDO	20.	1. J	/	CAR	SINA		
1) 1359 CARdin.	01 5180	7 Dolphin		-	TCAR	di MAL					
Purchase Order #		EMERGENCY COM	ITACT / PHO	NE NO.:							
16. GENERATOR'S CERTIFICATE:						and the second					
I hereby certify that the above-described	materials are not ha	zardous wastes as define	ed by CFR Pa	rt 261 or a	ny applicable	e state law, ha	ive been fu	Ily and			
accurately described, classified and packa Printed Name	ged and are in prop	Signature "On behal		ding to app	blicable regu	lations.	Month	Day	Year		
Printed Name	T.ast	Signature On benan	1	th-	~			11	12		
17. Transporter 1 Acknowledgement of R	1000			1		194 Y					
Printed Name		Signature	AXI				Month	Day	Year		
PRATT S.	hAW	191	Ny				7	11	12		
18. Transporter 2 Acknowledgement of R	Receipt of Materials		0								
Printed Name	· · · · · · · · · · · · · · · · · · ·	Signature	1.1.1.1			12 81	Month	Day	Year		
T. Dall.		0	RAN				7	11	14		
JAMES BALDW	.10	Hames	Marg	un	-			70	12		
19. Certificate of Final Treatment/Dispos							Te	1 sec.			
I certify, on behalf of the above listed trea			dge, the abo	ve-describ	ed waste wa	as managed in	compliant	ce with al			
applicable laws, regulations, permits and			vorod by this	manifect							
20. Facility Owner or Operator: Certificat	uon of receipt of noi		verea by this	s manifest.	-		Month	Dav	Year		
Printed Name	and C	Signature	CH	> 0			wonth	Day	rear		
ION, LOTIE	CACILITY CONT	Photo CENERATOR	2000	RX	al .	low CENEDA	TOP #1 CO	16	(Jan		
White- TREATMENT, STORAGE, DISPOSAL	FACILITY COPY	Blue- GENERATOR #			Yel	low- GENERA	OK #1 CO				
Pink- FACILITY USE ONLY		Gold- TRANSPORTER	#1 COPY								

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Client: AECOM - Resolut	ion Consultants						Laboratory ID	: SC11009	-001		
Description: BEALB1202TW01	WG20170308						Matrix	Aqueous			
Date Sampled:03/08/2017 1700											
Date Received: 03/11/2017											
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	2	sis Date Analyst 017 1211 PMV	Prep	Date	Batch 37143				
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene		71-4	43-2	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Ethylbenzene		100-4	41-4	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Naphthalene		91-2	20-3	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Toluene		108-8	88-3	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Surrogate	Q % I	Run 1 Recovery	Accepta Limi								
Bromofluorobenzene		109	85-11	4							
Dibromofluoromethane		92	80-11	9							
1,2-Dichloroethane-d4		102	81-11	8							
Toluene-d8		92	89-11	2							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of critientL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Client: AECOM - Resolution Consultants

Description: BEALB1202TW01WG20170308

Date Sampled:03/08/2017 1700

Terphenyl-d14

Laboratory ID: SC11009-001 Matrix: Aqueous

Date Received: 03/11/2017										
Run Prep Method 1 3520C	Analytical Met 82	hod Dilutio 70D 1	5	vsis Date Analyst 2017 2054 RBH			Batch 020 37108			
Parameter		N	CAS umber	Analytical Method	Result	Q	LOQ	LOD	DL	Units Run
Benzo(a)anthracene		5	6-55-3	8270D	0.10	U	0.20	0.10	0.040	ug/L 1
Benzo(b)fluoranthene		20	5-99-2	8270D	0.10	U	0.20	0.10	0.040	ug/L 1
Benzo(k)fluoranthene		20	7-08-9	8270D	0.10	U	0.20	0.10	0.040	ug/L 1
Chrysene		21	3-01-9	8270D	0.10	U	0.20	0.10	0.040	ug/L 1
Dibenzo(a,h)anthracene		5	3-70-3	8270D	0.10	U	0.20	0.10	0.040	ug/L 1
Surrogate	Q	Run 1 % Recover	Accept y Lim	ance hits						
Nitrobenzene-d5		63	44-1	20						
2-Fluorobiphenyl		62	44-1	19						

50-134

90

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time Q = Surrogate failure ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure S = MS/MSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Appendix D Regulatory Correspondence

August 24, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA Laurel Bay Underground Tank Assessment Reports

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 <u>et seq</u>., as amended).

The Department has reviewed the referenced reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at these sites.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

LIPT

Laurel Petrus, Environmental Engineer Associate RCRA Federal Facilities Section

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy, August 24, 2016 Subject: IGWA, Laurel Bay Underground Tank Assessment Reports

Draft Final Initial Groundwater Investigation Report for (41 addresses)

122 Banyan	905 Barracuda	
159 Cypress Tank 2	921 Barracuda	
221 Cypress	935 Albacore	
283 Birch Tank 2	946 Albacore	
328 Ash Tank 2	1037 Iris	
346 Ash	1039 Iris	
359 Aspen	1110 Iris	
370 Aspen	1134 Iris	
377 Aspen	1143 Iris	
409 Elderberry	1202 Cardinal	
486 Laurel Bay	1212 Cardinal	
515 Laurel Bay	1222 Cardinal	10
542 Laurel Bay	1224 Cardinal	
593 Aster	1226 Dove	
630 Dahlia	1236 Dove	
693 Camellia	1245 Dove	
723 Blue Bell	1247 Dove	
774 Althea	1274 Albatross	1995.
860 Dolphin	1319 Albatross	
873 Cobia	1337 Albatross	
883 Cobia		

July 27, 2017

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Draft Final Initial Groundwater Investigation Report, February and March 2017

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (DHEC) received groundwater data from temporary monitoring well installations in the Draft Final Groundwater Investigation Report, Laurel Bay Military Housing Area for the fifty two (52) addresses shown in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per DHEC's request, groundwater samples were collected from the attached referenced addresses. DHEC reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent groundwater monitoring wells should be installed at the three (3) stated addresses. For the remaining forty nine (49) addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that DHEC's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, DHEC retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Lalpt

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: Russell Berry, EQC Region 8 Shawn Dolan, Resolution Consultants Bryan Beck, NAVFAC MIDLANT Attachment to: Petrus to Drawdy

Draft Final Initial Groundwater Investigation Report for (52 addresses)

Permanent Well Installation recommedation (3 Addresses):

- 254 Beech Street (110 ug/L)
- o 268 Beech Street (28 ug/L)
- o 774 Althea Street (35 ug/L)

No Further Action recommendation (49 addresses):

113 Birch Drive 0 121 Banyan Drive 0 122 Banyan Drive 0 **159 Cypress Street** 0 221 Cypress Street 0 274 Birch Drive 0 279 Birch Drive 0 283 Birch Drive 0 328 Ash Street 0 346 Ash Street 0 359 Aspen Street 0 370 Aspen Street 0 377 Aspen Street 0 409 Elderberry Drive 0 465 Dogwood Drive 0 480 Laurel Bay Boulevard 0 486 Laurel Bay Boulevard 0 515 Laurel Bay Boulevard Q 542 Laurel Bay Boulevard 0 593 Aster Street 0 630 Dahlia Drive 0 641 Dahlia Drive 0 693 Camelia Drive 0 723 Bluebell Lane 0 860 Dolphin Street 0 873 Cobia Drive 0 883 Cobia Drive 0 905 Barracuda Drive 0 921 Barracuda Drive 0 935 Albacore Street 0 946 Albacore Street 0 1037 Iris Lane 0 1039 Iris Lane 0 1110 Iris Lane 0 1134 Iris Lane 0 1143 Iris Lane 0 1177 Bobwhite Drive 0 1202 Cardinal Lane 0 0 1212 Cardinal Lane 0 1222 Cardinal Lane 1224 Cardinal Lane 0 1226 Dove Lane 0 1236 Dove Lane 0 1245 Dove Lane 0 1247 Dove Lane 0 0 1274 Albatross Drive 1319 Albatross Drive 0 1337 Albatross Drive 0 1346 Cardinal Lane 0